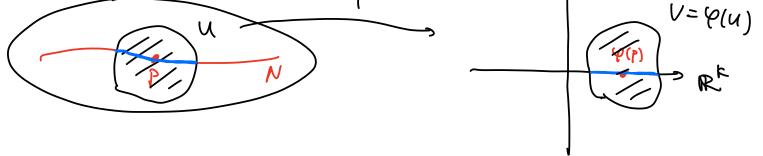
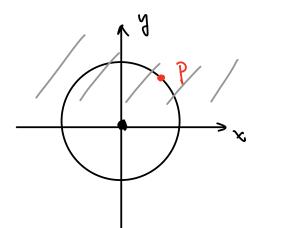
Reall how we learned mfd:
- Definition & basic examples
- Constructing mfds
- Associated data { vector fields on of vector
(interstition & Methods)
- Derivatives { derivative w.r.t. connection
$$\nabla_x(-)$$

(#F) { derivative w.r.t. connection $\nabla_x(-)$
(#F) { Lie derivative $L_x(-)$
based on pushforword or pullback and flows
(Methods)

Def Let M" be a wifd. A subset
$$N \subset M$$
" is called
a (regular or embedded) submitd if $\forall p \in N, \exists a localchart $(U, q: U \exists V)$ of M near p s.t.
 R^{n}
 $q(U \cap N) = \int x \in V | x_{k+1} = \dots = x_n = 0$
for some $o \leq k \leq n$. Here, dim $N = k$ and $n - k$ is called
the codimension of N in M.
 $q(R^{n-k}) = V = p(u)$$



P.g.
$$S' = \int (X, Y) \in \mathbb{R}^2 \int X + Y^2 = I \int is a (reg. or emb.) submittedof \mathbb{R}^2 , and dim $S' = codim S'(in \mathbb{R}^2) = 1$.$$



Take
$$U = |R(x) \times |R(y)|_{>0}$$

= open upper plane
 $\bigotimes : \Psi : U \Longrightarrow V$ if $\Psi = 41$, then
 $\Psi |U \cap S'| = open upper semi-circle$

$$(Y): Observe that UNS' = graph of f: (-1,1) \rightarrow \mathbb{R}^{2} = \begin{cases} (x, \sqrt{1-x^{2}}) \in \mathbb{R}^{2} \mid x \in (-1,1) \end{cases} f(x) Y=0 (Y=0 We aim to construct $\varphi: U \rightarrow V$ c.t. $\varphi((x,\sqrt{1-x^{2}})) = (x,0)$
 e UNS'
 Consider $\varphi: U(= \mathbb{R} \times \mathbb{R}_{>0}) \longrightarrow V(\cong \mathbb{R} \times \mathbb{R}_{>0})$ by
 $(x, y) \longrightarrow (x, y - \sqrt{1-x^{2}}) e = a$ homeomorphism$$

e.g. Slightly more general, if
$$f: \mathbb{R} \to \mathbb{R}$$
 is a smooth function,
then graph $(f) := \{(x, f(x)) \in \mathbb{R}^2\}$ is a dim-1
submfth of \mathbb{R}^2 .
e.g. If $F: \mathbb{M} \to \mathbb{L}^k$ is a smooth map, then
graph $(F) = \{(p, F(p)) \in \mathbb{M} \times \mathbb{L} \mid p \in \mathbb{M}\}$
is a dim-m submfth of $\mathbb{M} \times \mathbb{L}$.
 $\mathcal{U} \to \mathcal{U} \to \mathcal{U}$
 $\mathcal{U} \to \mathcal{U}$

$$\frac{R_{mK}}{K} - The image of a Smooth map may be very bad!$$

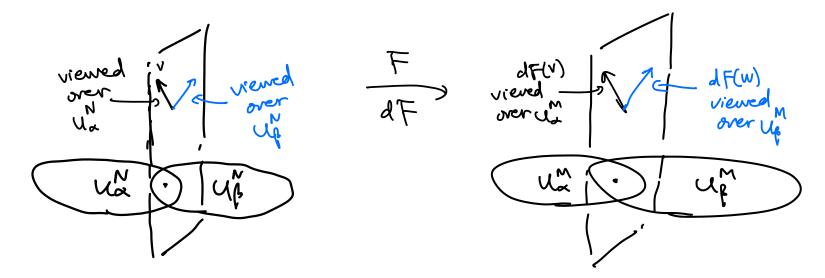
$$eg. F: R \rightarrow R^{2}$$

$$in(F) = In(F)$$

$$lowly ust modelled as a Excliden space to in(F), where in(F) is a to in(F), where in(F) is a (veg. or early.) submfd, one need to use $F_{R} = aF_{1}: TN \rightarrow TM.$

$$called differential of F or puchforward by F$$$$

Recall we have seen pushforward of a differ
$$(P:MS)$$
.
Here, the diffurction is similar:
 $dF: TN^{n} \rightarrow TM^{m}$
 $(x_{1}, \dots, x_{n}, \frac{\partial}{\partial x_{1}}, \dots, \frac{\partial}{\partial x_{n}})$
 $(y_{1}, \dots, y_{m}, \frac{\partial}{\partial y_{1}}, \dots, \frac{\partial}{\partial y_{m}})$
 $(occlly (within local charts)$
 $- on the level of unfolds: $P \rightarrow F(p) = (y_{1}(p), \dots, y_{m}(p))$
 $- on the level of vectors; $V \rightarrow Jac(F) \cdot V = (\frac{\partial y_{1}}{\partial x_{2}}) \dots V$
 $well-defined ?$
 $\frac{u^{n}}{u} \rightarrow u^{n}}$
 $\frac{u^{n}}{y_{1}} \cdot y_{2}^{-r}$
 $\frac{u^{n}}{v} (x^{n})$
 $\frac{u^{n}}{v}$$$



$$V \longrightarrow dF(v) = Jac(F) V \qquad (Ua, Pa) = Jac(F) V \qquad (Ua, Pa)$$

$$W = Jac(\Psi_{p}^{W}, \Psi_{n}^{W-1}) \cdot V \longrightarrow dF(w) = Jac(F) w \qquad (u_{p}^{W}, \Psi_{p}^{W})$$
$$= Jac(F) w \qquad (u_{p}^{W}, \Psi_{p}^{W})$$
$$\text{Then} \qquad Jac(F) w = (Jac(\Psi_{p}^{W}, \Psi_{n}^{W-1}) \cdot Jac(F) \cdot Jac(\Psi_{n}^{W}, \Psi_{p}^{W-1})) w$$
$$= Jac(\Psi_{p}^{W}, \Psi_{n}^{W-1}) \cdot Jac(F)(v) \qquad \checkmark$$

e.g.
$$F: M^n \rightarrow R$$
 smooth function
 $dF: TM^n \rightarrow TR (= R \times IR)$ and by def .
 $(v_{V} \cdots v_{N})^T$
 $V \rightarrow dF(V) = Jac(F)V$
 $T_{PM} = (\frac{\partial F}{\partial X_{1}}, \cdots, \frac{\partial F}{\partial X_{N}})(v) = directural$
 R_{MK} This explains why we denote the basis of tangent
Space T_{PM} by $\{\frac{\partial}{\partial X_{1}}, \cdots, \frac{\partial}{\partial X_{N}}\}$.
 $V = V_{1} \frac{\partial}{\partial X_{1}} + \cdots + V_{n} \frac{\partial}{\partial X_{n}} \Rightarrow (\frac{\partial F}{\partial X_{1}}, \cdots, \frac{\partial F}{\partial X_{n}})(\frac{v_{1}}{v_{n}})$
 $remute (V_{1} \frac{\partial}{\partial X_{1}} + \cdots + V_{n} \frac{\partial}{\partial X_{n}}) = v \cdot F$
e.g. Let NCM^m be a (reg. 2 emb.) suburfed. Denote
 $i: N \rightarrow M$ inclusion.
Then over local chart.